Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yu-Xi Sun,* Ran Zhang, Bao-Lin Wang, De-Jun Ding and Shu Liu
 Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail: yuxisun@163.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.057$
$w R$ factor $=0.134$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-(2,3-Dichlorobenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one

The title Schiff base compound, $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$, was synthesized by the reaction of 4-amino-1,5-dimethyl-2-phenyl- 1 H -pyrazol-3(2H)-one and 2,3-dichlorobenzaldehyde in MeOH solution. There are two molecules in the asymmetric unit. As expected, the compound adopts a trans configuration about the central $\mathrm{C}=\mathrm{N}$ bond. In the crystal structure, molecules are linked through weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions.

Comment

Antipyrine and its derivatives exhibit a wide range of biological activities and applications (Yadav et al., 2003; Ismail, 2000; Abd El Rehim et al., 2001). A few crystal structures of antipyrine derivatives have been investigated (Liang et al., 2002; Li \& Zhang, 2004, 2005; Zhang \& Li, 2005; You, et al., 2004, 2006; Wen, 2005). Schiff bases of salicylaldehyde have demonstrated significant biological activity and new examples are being tested for their antitumor, antimicrobial and antiviral activity (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). As an extension of our work (Sun et al., 2006) on the structural characterization of antipyrine derivatives, the title compound, (I), is reported here.

(I)

The asymmetric unit of (I) consists of two independent molecules (Fig. 1). In both of these, the bond lengths and angles are in normal ranges, close to those observed in similar antipyrine Schiff bases cited above. The dihedral angle between the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7-\mathrm{C} 9$ pyrazoline ring and the C1-C6 benzene ring is $47.8(3)^{\circ}$ and that between the N4/N5/C25-C27 pyrazoline ring and the $\mathrm{C} 19-\mathrm{C} 24$ benzene ring is $61.7(3)^{\circ}$. Atom O1 deviates from the pyrazoline mean plane by 0.132 (3) \AA, whereas atoms C10 and C11 deviate from it, on the opposite side, by 0.133 (3) and 0.681 (4) \AA, respectively. Atom O 2 deviates from the other pyrazoline mean plane by 0.153 (3) Å, whereas atoms C28 and C29 deviate from it, on the opposite side, by 0.059 (2) and 0.771 (4) \AA, respectively. As a result of conjugation through the imino double bonds, the pyrazoline and C13-C18 and C31-C36 benzene ring systems in both molecules are nearly coplanar, the dihedral angle

Received 14 September 2006
Accepted 18 September 2006

Figure 1
The asymmetric unit of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.

Part of the crystal packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines.
between the $\mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7-\mathrm{C} 9$ pyrazoline ring and the $\mathrm{C} 13-\mathrm{C} 18$ benzene ring being $11.5(5)^{\circ}$ [mean deviation from the combined mean plane is 0.087 (5) \AA] and that between the $\mathrm{N} 4 /$ N5/C25-C27 pyrazoline ring and the C31-C36 benzene ring is 11.7 (5) ${ }^{\circ}$ [mean deviation from the combined plane is 0.004 (5) \AA]. As expected, the two molecular structures adopt the same trans configurations about the $\mathrm{C} 12=\mathrm{N} 3$ and $\mathrm{C} 30=\mathrm{N} 6$ bonds as the other antipyrine derivatives that have been reported.

In the crystal structure, $\mathrm{C} 17-\mathrm{H} 17 \cdots \mathrm{O} 2^{\mathrm{i}}$ and $\mathrm{C} 35-$ H35 …O1 $1^{\text {ii }}$ non-classical weak hydrogen bonds link the molecules into one-dimensional chains along the b axis (Fig. 2 and Table 1). In addition, the ortho Cl atoms participate in the formation of intramolecular weak hydrogen bonds (Table 1).

Experimental

All the chemicals were obtained from commercial sources and used without purification. 4-Amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one ($2 \mathrm{mmol}, 0.406 \mathrm{~g}$) and an equimolar quantity of $2,3-$ dichlorobenzaldehyde ($2 \mathrm{mmol}, 0.350 \mathrm{~g}$) were dissolved in methanol $(15 \mathrm{ml})$. The mixture was stirred for 30 min at room temperature to give a clear yellow solution. The resulting solution was kept in air for

12 d , and yellow prism-shaped crystals of (I) were formed at the bottom of the vessel on slow evaporation of the methanol (yield 89.7%). Analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C} 60.01, \mathrm{H} 4.20, \mathrm{~N}$ 11.66%; found: C 59.89 , H 4.17, N 11.59%.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$

$$
Z=16
$$

$M_{r}=360.23$
Monoclinic, C2/c
$a=18.9602(8) \AA$
$b=7.1044$ (3) \AA
$c=51.387$ (2) A
$\beta=96.529(1)^{\circ}$
$V=6877.0(5) \AA^{3}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.956, T_{\text {max }}=0.973$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.134$
$S=1.09$
7114 reflections
437 parameters
H -atom parameters constrained
$Z=16$
$D_{x}=1.392 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.39 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, yellow
$0.35 \times 0.08 \times 0.07 \mathrm{~mm}$

35938 measured reflections
7114 independent reflections
5532 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=26.5^{\circ}$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0478 P)^{2}\right.} \\
&+7.688 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.35 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C17-H17 \cdots O2 ${ }^{\mathrm{i}}$	0.93	2.52	$3.153(4)$	125
C12-H12 Cl^{C}	0.93	2.70	$3.067(3)$	104
C12-H12 O1 12.35	$3.025(3)$	129		
C35-H35 O^{ii}	0.93	2.93	2.65	$3.221(3)$
C30-H30 Cl 3	0.93	2.68	$3.059(3)$	121
C30-H30 $\cdots \mathrm{O} 2$	0.93	2.42	$3.061(3)$	126

Symmetry codes: (i) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (ii) $x, y+1, z$.
All H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$) and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SAINTPlus (Bruker, 2002); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (grant Nos. 30270245 and 30470247) and Qufu Normal University for Science and Technology.

References

Abd El Rehim, S. S., Ibrahim, M. A. M. \& Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268-273.
Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. \& Ali, A. M. (2002). J. Inorg. Biochem. 92, 141-148.

organic papers

Bruker (2002). SMART (Version 5.628), SAINT-Plus (Version 6.22) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Cukurovali, A., Yilmaz, I., Özmen, H. \& Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.
Ismail, K. Z. (2000). Transition Met. Chem. 25, 522-528.
Liang, H., Yu, Q. \& Hu, R.-X. (2002). Transition Met. Chem. 27, 454-457.
Li, Z.-X. \& Zhang, X.-L. (2004). Acta Cryst. E60, o2199-o2200.
Li, Z.-X. \& Zhang, X.-L. (2005). Acta Cryst. E61, o375-o377.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sun, Y.-X., Zhang, R., Jin, Q.-M., Zhi, X.-J. \& Lü, X.-M. (2006). Acta Cryst. C62, o467-o469
Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. \& Fun, H.-K. (2002). Polyhedron, 21, 2547-2554.

Wen, P. (2005). Acta Cryst. E61, o2918-o2920.
Yadav, P. N., Demertzis, M. A., Kovala-Demertzi, D., Skoulika, S. \& West, D. X. (2003). Inorg. Chim. Acta, 349, 30-36.

You, Z.-L., Wang, J. \& Chi, J.-Y. (2006). Acta Cryst. E62, o1652-o1653.
You, Z.-L., Zhu, H.-L. \& Liu, W.-S. (2004). Acta Cryst. E60, o801-o803. Zhang, X.-L. \& Li, Z.-X. (2005). Acta Cryst. E61, o266-o268.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

